86 research outputs found

    Demography and the age of rare variants

    Full text link
    Large whole-genome sequencing projects have provided access to much of the rare variation in human populations, which is highly informative about population structure and recent demography. Here, we show how the age of rare variants can be estimated from patterns of haplotype sharing and how these ages can be related to historical relationships between populations. We investigate the distribution of the age of variants occurring exactly twice (f2 variants) in a worldwide sample sequenced by the 1000 Genomes Project, revealing enormous variation across populations. The median age of haplotypes carrying f2 variants is 50 to 160 generations across populations within Europe or Asia, and 170 to 320 generations within Africa. Haplotypes shared between continents are much older with median ages for haplotypes shared between Europe and Asia ranging from 320 to 670 generations. The distribution of the ages of f2 haplotypes is informative about their demography, revealing recent bottlenecks, ancient splits, and more modern connections between populations. We see the signature of selection in the observation that functional variants are significantly younger than nonfunctional variants of the same frequency. This approach is relatively insensitive to mutation rate and complements other nonparametric methods for demographic inference.Comment: Revised versio

    What is ancestry?

    Get PDF
    Ancestry connects genetics and society in fundamental ways. For many people it has cultural, religious or even political significance, and can play a key role in shaping personal and public identities. People’s desire to discover their own ancestry drives the multibillion-dollar genealogy industry, which has grown rapidly in the era of consumer genomics. Companies such as 23andMe and Ancestry now claim tens of millions of customers worldwide. In parallel, our scientific understanding of the human past is being transformed by studies of ancient and modern genetic data, which allow us to track changes in ancestry over space and time. Sophisticated methods have been developed to infer and visualise these relationships. Thus, it seems that both scientists and the wider public are learning more and more about ancestry, and there is an optimistic sense that genetic data provide an exhaustive repository of ancestral information

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or \u27scaffold\u27) of haplotypes across each chromosome. We then phase the sequence data \u27onto\u27 this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    The genetic prehistory of the Greater Caucasus

    Get PDF
    5月16日,厦门大学人类学系、德国马普所、德国考古所、俄罗斯文化遗产联合会、奥地利维也纳大学人类学系、爱尔兰都柏林大学学院考古系、罗蒙诺索夫莫斯科国立大学考古系和人类学博物馆、俄罗斯国立东方艺术博物馆、俄罗斯联邦达吉斯坦考古与民族志研究所历史系、美国韦尔斯利学院人类学系、瑞士巴塞尔大学史前与考古科学研究所、德国国家遗产博物馆等36家单位的46位共同作者组成的国际合作团队在BioRxiv上预发表论文《The genetic prehistory of the Greater Caucasus》,厦门大学人类学系王传超研究员为论文的第一作者和通讯作者,也是该国际团队中的唯一一位来自中国的合作者。【Abstract】Archaeogenetic studies have described the formation of Eurasian 'steppe ancestry' as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4th millennium BCE that subsequently facilitated the advance of pastoral societies likely linked to the dispersal of Indo-European languages. To address this, we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting that - unlike today - the Caucasus acted as a bridge rather than an insurmountable barrier to human movement. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected Anatolian farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry.This work was funded by the Max Planck Society and the German Archaeological Institute (DAI). C.C.W. was funded by Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302) and the Fundamental Research Funds for the Central Universities. 该研究由德国马普学会、德国考古所、厦门大学南强青年拔尖人才支持计划资助

    Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa.

    Get PDF
    Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.Main funding: This work was funded by the Wellcome Trust, The Wellcome Sanger Institute (WT098051), the U.K. Medical Research Council (G0901213-92157, G0801566, and MR/K013491/1), and the Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS core funding

    Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development

    Get PDF
    β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome
    corecore